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Abstract
Substitution rules defined on the binary alphabet and invariant under the
interchange of both participating symbols are considered. Typically, the
resulting symbolic sequences are weakly disordered, and their Fourier
spectra are singular continuous. Exact relations are derived which express
the correlation dimension of the multifractal spectral measure in terms of the
entries in the substitution pattern. Recurrence relations are obtained for the
finite-length spectral sums and for the autocorrelation function.

PACS number: 05.45.−a

1. Introduction

Although our models of the surrounding world are based on continuous spatio-temporal
coordinates, the presence of physical patterns which appear to be discrete in space and/or in
time, can be recognized in almost every natural phenomenon. Since the relevant set of such
patterns is in most cases finite, the description can often be reduced to strings of symbols
from a finite alphabet. A symbolic description is often helpful in understanding critical or
nearly critical phenomena which possess the property of scaling invariance. As a consequence,
the corresponding symbolic sequences are self-similar: invariant with respect to replacement of
certain blocks of several symbols by single symbols. Inversely, infinite self-similar symbolic
codes can be generated from a single initial symbol by means of repeated substitutions
(inflations): replacements of each symbol of the alphabet by the prescribed word (substitution
pattern). Due to the simplicity of description, substitution sequences are widely employed for
the studies of different aspects of complexity [1, 2].

Along with examples of well-correlated regular structures, substitutions can produce
aperiodic symbolic sequences. The degree of disorder in such sequences is, in some sense,
weak: dynamical systems arising from deterministic substitution rules are not mixing [3]. It
is convenient to characterize substitution sequences in terms of an autocorrelation function
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and a Fourier spectrum. These characteristics vary widely among the aperiodic substitution
patterns: thus, for the Fibonacci sequence the Fourier spectrum is discrete (atomic) and
the autocorrelation displays peaks at Fibonacci numbers, whereas for the Rudin–Shapiro
sequence the spectrum is absolutely continuous, and the autocorrelation vanishes identically
[2]. An example of intermediate dynamics is delivered by the Thue–Morse binary substitution
A → AB,B → BA [4, 5] whose Fourier spectrum is neither discrete nor absolutely
continuous [6], but singular continuous: it is supported by the dense disjoint continuum.

In this paper we describe the properties of the spectral measure for the natural extension
of the Thue–Morse substitution rule: symmetric binary substitutions. Let the substitution rule
be A → W1, B → W2, where W1 and W2 are two words of the same length which contain only
A and B. Then the substitution is symmetric if W2 can be obtained from W1 by simultaneous
replacement of all A by B and all B by A. An example is A → ABBAB,B → BAABA. An
equivalent definition: let symbols be 0 and 1, and their substitution patterns, respectively, two
words w0 and w1 of the same length L. Read these words as binary numbers. The substitution
is symmetric if w0 + w1 = 2L − 1. By explicit computation, we demonstrate that the Fourier
spectrum of a non-trivial symmetric substitution is singular continuous; for a class of such
substitutions it is shown that the generalized dimensions of the spectral measure are bounded
away from zero.

Symmetric substitutions can be employed in the traditional domain of mathematical
physics: studies of localization and disorder in terms of spectral properties of one-dimensional
discrete Schrödinger operators for potentials which take finitely many values. Situations in
which the latter values are supplied by various substitution sequences have been extensively
treated [7–10]. It has been established that the singular continuous character of the spectrum is
closely related to the abundance in the substitution sequence of arbitrarily long ‘palindromes’
(words which read backwards the same way as forwards, such as ABBA) [11, 12]. Being by
construction rich in palindromes, symmetric substitution sequences can provide material for
further advances in this direction.

Another physical context in which symmetric substitutions play an important role, arises
in studies of scenarios of homoclinic bifurcations in continuous dissipative systems with saddle
points and Lorenz-like mirror symmetries. Such scenarios, proposed in [13], were found in
dynamical systems modelling chemical turbulence [14], thermal convection in a modulated
gravity field [15], fluid motions in the magnetic field [16], thermocapillary flows [17], optical
phenomena in nematic liquid crystals [18], etc. In short, this bifurcation sequence can be
described as follows. Let the symmetry transformation leave the saddle point invariant but
interchange two components of the one-dimensional unstable manifold of this point. In such
systems, homoclinic orbits to the saddle point arise in pairs. The return mapping on the
appropriate Poincaré plane can be reduced to a discontinuous one-dimensional map of the
kind xi+1 = (−µ + |xi|ν + h.o.t.)sign(xi), where µ is the parameter and ν > 1 is the so-
called ‘saddle index’: the ratio of the two leading eigenvalues of the flow linearized near
the saddle point. It is natural to encode each turn of the orbit in the phase space by one of
two letters (say, R and L), depending on the sign of xi . The increase of µ is accompanied
by the alternation of homoclinic bifurcations with symmetry-breaking bifurcations of more
and more complicated periodic states. During the primary transition from order to chaos,
transformation of the symbolic code of the attracting orbit follows the Thue–Morse substitution
R → RL,L → LR. It has been found that the fractality of the Fourier spectrum of the
Thue–Morse sequence is largely reproduced by power spectra of both the Poincaré map and
the continuous-time flow variables [19] (in the latter case the slowdown of the motion near the
saddle causes additional effects [20]). Beyond the onset of chaos, one finds on the parameter
axis a countable set of further accumulation points; they correspond to bifurcation scenarios
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with symbolic dynamics different from the Thue–Morse substitution. Many (not all!) of the
symmetric binary substitutions can be found among these scenarios; the next shortest example
is R → RLL,L → LRR. Therefore, knowledge of the spectral characteristics of symmetric
substitution rules can shed additional light on corresponding bifurcation sequences in families
of mappings and differential equations.

In section 2 we discuss the properties of symmetric substitution rules, derive recursion
relations which describe the growth of finite spectral sums, and introduce a multifractal
formalism for the spectral measure. In section 3 we show how computation of the correlation
dimension of this measure is reduced to solving the quadratic equation whose coefficients
are explicitly expressed through the elements of the substitution pattern. As an illustration,
this algorithm is applied to all substitutions with length of the substitution pattern L � 16.
In section 4 the analysis is performed for the particular family of substitutions. Finally, the
results are re-cast in terms of the autocorrelation function.

2. Inflation rule and spectral measure

Let the substitution rule be

A → C
(1)

B → C

where C is some string of L symbols A and B, and C denotes the ‘negation’ of C produced
from it by replacement of each A by B and each B by A. Without restrictions of generality
we assume that the first symbol in the substitution pattern C is A; if it is B, we obtain the
string which begins with A by applying the substitution rule twice. Starting with the single
symbol and performing the substitution n times, the sequence with length ln = Ln is created;
for n → ∞ this yields the fixed point of the substitution: (semi-)infinite symbolic sequence
{ζj}, j = 1, 2, 3, . . . .

The same sequence {ζj } can be generated from the initial symbol by using repeated
concatenations instead of substitutions. Each such concatenation abuts onto the already
existing sequence a set consisting of L − 1 copies and ‘negations’: out of a sequence {xj } it
builds the sequence of L consecutive blocks in which the kth block is {xj } if the kth entry in
the pattern C is A, and {xj } if this letter is B.

When the substitution rule is viewed as a dynamical system, the sequence {ζj } becomes
the record of states of this system, and the index j plays the role of discrete time. Since the
alphabet consists of two symbols, a generic observable in this dynamics has only two values.
It is convenient to assign numerical values to symbols: A = 1 and B = −1, and take for
an observable the value of ζj itself. By this, the substitution pattern C is associated with the
sequence of integers {ξi}, i = 1, . . . , L where ξi = 1 if the ith symbol in C is A, and ξi = −1
if the ith symbol in C is B.

Symmetric substitution rules cannot have a purely discrete spectrum. According to
theorem VI.24 from [1], the necessary and sufficient condition for this is the existence of such
i and j that, after i iterations of the substitution, the j th symbol in the sequence obtained from
A coincides with the j th symbol in the sequence obtained from B. Since, due to symmetry,
the sequence obtained from B is always complementary to the sequence obtained from A, this
condition cannot be fulfilled.

As a quantitative characteristic of the degree of disorder in the symbolic string generated
by the substitution sequence, let us determine the structure of its Fourier spectrum. Take
a real ω (0 � ω < 1) and consider dynamics of finite-length Fourier sums under the
application of transformation (1). For the first ln symbols of {ζj } this sum is defined
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as σn(ω) = ∑ln
j=1 ζj exp(2π ijω), and the corresponding finite-length approximation to

the power spectrum is Sn(ω) = |σn(ω)|2/ln. Obviously, σ0(ω) = S0(ω) = 1. Performing one
concatenation, we proceed to ln+1 and obtain recurrent relations for the Fourier sums:

σn+1(ω) = σn(ω)

L∑
j=1

ξj exp(2πωi(j − 1)Ln) (2)

and

Sn+1(ω) = Sn(ω)

L∑
j=1

gj cos(2πω(j − 1)Ln) (3)

where the coefficients gi are sums of pairwise products of elements of the substitution pattern:

gi = 2 − δi,1

L

L+1−i∑
j=1

ξj ξi+j−1. (4)

It is straightforward to see that g1 = 1.
The limit of large n in (3) characterizes the local nature of the power spectrum at each

given point ω and yields the global distribution of the spectral measure µ:

µ(ω) = lim
n→∞ Sn(ω) = lim

n→∞

n−1∏
k=0


1 +

L∑
j=2

gj cos(2πω(j − 1)Lk)


 . (5)

The properties of this infinite product can be inferred with the help of approximations
Sn(ω). Vanishing of Sn(ω) for some n implies µ(ω) = 0. For those rational numbers ω = p/q

for which finite spectral sums do not vanish, the ratio ρ(n) = Sn+1(ω)/Sn(ω) oscillates as
a function of n with period τ � q − 1. If L divides q, these oscillations are preceded by a
transient whose length equals the multiplicity of L in the factorization of q. ‘On average’,
finite-length approximations to the power spectrum evolve according to Sm ∼ (ρ)m with ρ

being the geometric mean of ρ(n) over the period τ of oscillations. In terms of the length l
of the symbolic string, this growth or decay is proportional to lκ where the exponent κ equals
log ρ/ log L (accordingly, the Fourier sums |σn| evolve proportionally to lγ , with κ = 2γ − 1
[21]). Obviously, for the values of ω with negative κ the spectral sums vanish in the limit
l → ∞, which results in µ(ω) = 0. The values of ω with positive κ correspond to the
singularities (peaks) of the power spectrum. It can be shown that the maximal possible value
κ = 1, required for δ-peaks, can be reached only in two cases:

(a) by trivial substitutions where all L symbols in C are the same (C = AA · · ·AA); here
gj = 2 − 2(j − 1)/L, j = 2, . . . , L, and the only δ-peak is located at ω = 0;

(b) by patterns of odd length L in which the symbols in C alternate (C = ABA · · ·BA); in
this case a sequence with period 2 is generated, and the only δ-peak sits at ω = 1/2.

For all other substitutions, the inequality κ < 1 holds for all rational values of ω; accordingly,
the singularities of the spectral measure are weaker than δ-peaks, and the discrete (atomic)
component is absent in the spectral measure of these substitutions.

Equation (3) describes evolution of the spectral sum under concatenation. Alternatively,
we can follow the transformation of spectral sums under inflation; this results in the ‘non-local’
recurrent relation

Sn+1(ω) = Sn(Lω)


1 +

L∑
j=2

gj cos 2π(j − 1)ω


 . (6)
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The limit of this expression at n → ∞ yields the functional equation for the spectral measure
µ(ω):

µ(ω) = µ(Lω)


1 +

L∑
j=2

gj cos 2π(j − 1)ω


 . (7)

In order to evaluate the multifractal characteristics of the spectral measure, we follow
the approach of [21] and divide the interval of ω between 0 and 1 into N segments of
length ε = 1/N ; the probability to locate the spectral measure in the kth segment is
pk = ∫ kε

(k−1)ε
µ(ω) dω. For a real number q the partition function is introduced as Z(q) =∑N

k=1 p
q

k . Since the spectral measure µ(ω) is not directly available, the approximations Sn(ω)

are used for the estimates of the local density of the probability pk/ε. In this way we get a
sequence of approximationsZ(q, n) to the partition function; as N tends to infinity, summation
in these approximations can be replaced by integration: Z(q, n) = εq−1

∫ 1
0 S

q
n (ω) dω. On the

other hand, the spectral sums Sn(ω), being computed over the first Ln symbols of the sequence,
enable only finite resolution in the frequency domain; therefore there is no sense in infinite
refinement of the partition without the simultaneous increase of n. Usage of Sn+1 instead of
Sn improves the resolution by the factor L; hence the partition segments of the length ε can be
replaced by segments of length ε/L. This interrelates the order of the approximation n and
the length εn of the box of the corresponding partition: εn ∝ L−n.

The usual scaling assumption Z(q, n) ∼ ετ(q) leads to the generalized (Rényi) dimensions:
Dq = τ (q)/(q − 1). Substituting here the relation εn ∝ L−n, we arrive at

Dq = τ (q)

q − 1
= 1 − log λ(q)

(q − 1) log L
(8)

where λ is defined as

λ(q) = lim
n→∞

∫ 1
0 S

q

n+1(ω) dω∫ 1
0 S

q
n (ω) dω

= lim
n→∞

∫ 1
0

∏n
k=0

(∑L
j=1 gj cos(2πω(j − 1)Lk)

)q

dω

∫ 1
0

∏n−1
k=0

(∑L
j=1 gj cos(2πω(j − 1)Lk)

)q

dω
. (9)

The value of D0 (box-counting dimension, capacity) equals 1. This results from the fact
that the values of ω with positive ‘growth rates’ κ are dense on the interval: it is enough to
find just a single rational value of ω for which the spectral sums grow, in order to establish the
existence of the countable dense set of such values. For 0 < q � 1 the leading term in the
expansion of (9) describes the decrease of generalized fractal dimension from 1 as a function
of q:

Dq
∼= 1 + q

∫ 1
0 log

(
1 +

∑L−1
j=1 gj+1 cos 2πjω

)
dω

log L
+ O(q2). (10)

In several cases integration in (10) can be performed explicitly. Thus, for the Thue–Morse
substitution A → AB this yields Dq

∼= 1 − q + O(q2); for the pattern A → ABB (and
equivalent pattern A → AAB) we get Dq

∼= 1 + q(log(3 +
√

5) − log 6)/ log 3 + O(q2) =
1 − 0.12396q + O(q2), etc.

In general, evaluation of λ(q) from (9) requires numerical integration of finite spectral
sums and extrapolation to the limit n → ∞. However, as shown in [22], for integer q � 2
the explicit relation between Sn+1(ω) and Sn(ω) in terms of trigonometric series (akin to
equation (3)) can be used for reducing the problem to the computation of the largest eigenvalue
of the q × q matrix. Below, we will mostly concentrate on the case q = 2 which yields the
correlation dimension of the spectral measure.
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3. Correlation dimension of spectral measure: general results

For positive integer values of q, the integrands in equation (9) turn into trigonometric
polynomials. Let us denote in the cos-expansion of S2

n(ω) the ω-independent term by Pn

and the coefficient at cos(2πωln) by Qn. The evolution of P and Q under the increase of n is
governed by linear recursion

Pn+1 = a11Pn + a12Qn Qn+1 = a21Pn + a22Qn (11)

with matrix elements given by the expressions:

a11 = 1

2


1 +

L∑
j=1

g2
j


 a12 = 1

2


g2 +

L−1∑
j=1

gjgj+1




(12)

a21 = 1

2


 L∑

j=2

gjgL+2−j


 a22 = 1

4


2g1gL +

L∑
j=1

gjgL+1−j +
L∑

j=3

gjgL+3−j




where the coefficients gj are recovered from the substitution pattern C by means of
equation (4).

Since only the ω-independent term Pn contributes to the integral
∫ 1

0 S2
n(ω) dω, the value

of λ(2) in equation (9) equals the growth rate of P, i.e. the largest eigenvalue of the matrix
(12). Thus, computation of the correlation dimension D2 has been reduced to solving the
quadratic equation whose coefficients can be easily determined from the substitution pattern.
In figure 1 the values of D2 are plotted for all possible non-trivial substitutions of the length
L � 16.

Notably, almost all of the values of D2 plotted in figure 1 correspond to several different
substitution patterns. This is a consequence of various internal symmetries within the set of all
possible patterns of the given length; the most obvious of these is the symmetry between the
‘right’ and the ‘left’: naturally, properties of spectral measure are independent of the direction
in which the substituted word is read, and A → ABAA is equivalent to A → AABA.

0

0.25

0.5

0.75

1

2 4 6 8 10 12 14 16

D
2

L

Figure 1. Correlation dimension for the spectral measure of symmetric binary substitutions of
length L. Dashed line: family A → ABB · · · BB.
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4. The ‘least disordered’ substitutions

Of all possible substitutions with given length L the ‘least continuous’ spectral measure
(measure with the value of D2 closest to zero) belongs to those whose substitution pattern is
the least disordered. For L > 8 these are the ‘nearly trivial’ substitutions: those which have
in the substitution pattern L − 1 consecutive identical symbols preceded (or followed) by one
complementary symbol: A BB · · · BB︸ ︷︷ ︸ or AA · · ·AA︸ ︷︷ ︸ B.

For this family of substitutions the above expressions can be substantially simplified. The
coefficients gj in the recurrent relation (3) for spectral sums are gj = 2 − 2(j + 1)/L, j =
2, . . . , L. Substituting this into (12) we see that the values of λ for this family are the larger
roots of the quadratic equation:

λ2 − λ
L3 − 8L2 + 25L − 24

L2
+

(L − 8)(3L2 − 8L + 8)

3L3
= 0. (13)

The corresponding values of D2 = 1 − log λ/ log L are shown by the dashed line in figure 1.
It can be seen that for L > 10 they lie distinctly lower than the values for all other families of
substitutions. The asymptotic expression for L → ∞ is

D2 = 8

log L

(
L + 1

L2
+ O(L−4)

)
. (14)

Another important observation for this family of substitutions is that for L > 5 the
peak of Sn(w) which is the highest and grows the fastest, is located at ω = 0, with
Sn+1(0) = Sn(0) × (L − 2)2/L. Knowledge of this growth rate allows us to estimate the
asymptotics of fractal dimensions Dq at q → ∞: for large q the dominating contribution to
the partition sum is made by the segments containing the peaks which grow the fastest; these
peaks sit at the dense set of values of ω whose expansion in the L-adic system ends with the
infinite string of zeros. On proceeding to the next value of n, the height of such peaks grows
by the factor

(
(L − 2)2/L

)q
, whereas their width decreases by the factor L. Accordingly,

equation (9) yields λ ≈ (L − 2)2qL−1−q . Thereby

Dq = 1 − log λ

(q − 1) log L
≈ 2q

q − 1

(
1 − log(L − 2)

log L

)
. (15)

This gives the lower bound for generalized dimensions: Dq > D∞ = 2−2 log(L−2)/ log L;
for large L it turns into

D∞ = 4

log L

(
1

L
+

1

L2
+ O(L−3)

)
≈ D2

2
. (16)

Thus we see that for finite L the range of generalized fractal dimensions of the spectral measure
is bounded away from zero.

5. Recurrent relations for the autocorrelation

A similar analysis can be pursued for any integer q > 1: presentation of S
q
n (ω) in the form

of finite trigonometric series shows that from all 1 + qn(L − 1) terms of this expansion only
q terms contribute to the ω-independent term of S

q

n+1(ω). Evolution of these terms is governed
by q linear recursion relations; accordingly, the growth rate λ(q) turns out to be the largest
eigenvalue of the q × q matrix whose elements are polynomial combinations of the entries gj

of the substitution pattern.
A power spectrum characterizes a substitution sequence in the frequency domain; in

the ‘spatial’ domain the sequence is characterized by the autocorrelation function C(j),
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j = 1, 2, . . . . In our case, if the numerical values assigned to symbols are ζj = ±1, this
function is given by C(j) = 〈ζkζk+j 〉, where averaging is performed over the position k.
The autocorrelation function is the Fourier transform of the power spectrum: if the spectral
measure is presented in the form µ(ω) = 1 +

∑∞
j=1 cj cos(2πjω), then C(m) = cm/2. On

substituting this trigonometric expansion into equation (7), we derive L recursions which relate
the values of C(Lk + j), j = 0, 1, . . . , L − 1 to the values of C(k) and C(k + 1):

C(Lk) = C(k) (17)

C(Lk + j) = 1
2 (C(k)gj+1 + C(k + 1)gL−j+1) j = 1, . . . , L − 1. (18)

This permits us to begin with C(0) = 1 and compute C(m) recursively for each m, starting
with C(1) = g2/(2 − gL). For even values of L, g2 
= 0, and, hence, C(1) cannot vanish;
for L odd, it can, in principle, vanish, but in this case C(2) = g3/2 
= 0. Thereby, owing to
equation (17), C(j) does not decay completely at j → ∞. Accordingly, the spectral measure
of the substitution sequence cannot be absolutely continuous with respect to the Lebesgue
measure.

As seen from equation (17), the values of arguments corresponding to the highest peaks
of C(k) form the geometric progression, and the whole pattern of the autocorrelation function
is approximately log-periodic.

Autocorrelation can be used as a tool which provides information on the fractal
characteristics of the spectral measure without constructing this measure itself. Thus, the
asymptotic decay rate of the integrated autocorrelation Cint(k) ≡ k−1 ∑k

j=1 C(j)2 yields the
correlation dimension: Cint(k) ∼ k−D2 [23, 24]. Evaluation of this decay rate in our case,
leads, naturally, to the computation of the largest eigenvalue of the matrix (12). The values
of generalized dimensions Dq for integer q > 2 can be found from the growth rates of sums
of products

∏j=q

j=1 C(kj ), kq = k1 + k2 + · · · + kq−1 [22]; this approach is equivalent to the
aforementioned reduction to the q × q matrix.
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